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SUMMARY 

In order to minimize the probability of a spacecraft being ad- 
dressed erroneously by the transmitted command address code of 
another spacecraft, an analysis has been conducted on the deter- 
mination of optimum command address codes. The criteria used 
in this analysis for determining optimum command address codes 
are: (1) the Hammingdistance; and (2) the code subsequences (i.e., 
no subsequence of a commandaddress code can be identical to an- 
other command address code).* 

In general, for a given word length, the aforementioned prob- 
ability of e r r o r  decreases as the Hamming distance increases. For  
two o r  more word lengths, the probability of e r r o r  also decreases 
a s  the code subsequences (of each command address code), which 
are i d e n t i c  a1 to command codes, decrease. It is shown and/or 
proven that the number of command address codes is reduced as: 
(1) the Hamming distance increases; and/or (2) the code subse- 
quences, which a r e  identical to command address codes, decrease. 
The reduction in the number of command address codes is  es- 
pecially severe when the code subsequences criterion is satisfied 
(i.e., no subsequence of a command address code is identical to any 
other commandaddress code). This severe reduction in the num- 
ber of command address codes makes it impractical to use a set 
of command address codes of more than two distinct word lengths. 
A set of c o m m a n d  address c o d e s  of one (i.e., the same) word 
length is ideal since the code subsequences criterion is no longer 
applicable. 

* It i s  understood that other criteria must be considered in the determination of 
optimum command address codes.  Further analysis is being presently conducted 
by the author a s  well as other GSFC personnel. 
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ON THE DETERMINATION OF OPTIMUM COMMAND 

ADDRESS CODES 

by 
Walter D. Davis 

INTRODUCTION 

At the request of E. Melendey of the Command and Control Section, Space 
Data Control Branch, an analysis has been conducted to determine optimum 
command address codes which can be assigned to NASA spacecrafts by the 
GSFC Frequency Control Officer. The optimum command address codes were 
to be determined o r  selected from the sets of all 4, 5, . . . . , 31, and 32-digit 
binary words in a manner to minimize the probability of a spacecraft being 
addressed erroneously by the transmitted command address code of another 
spacecraft. The purpose of th i s  write-up is to report the results of the afore- 
mentioned analysis which could revolutionize the present GSFC method( s) for 
assigning command address codes to  NASA spacecraft. 

Several optimum sets of 4-digit and 8-digit command address codes which 
respectively have a minimum mutual Hamming distance of 2 and 4 a r e  given in 
Table I. 

The upper bound for the number of binary words or  codes of length n, 
which have a mimimum mutual Hamming distance of d, are given in Table I1 
for n = 4,5, .  . . . , 13andd = 2, 3 , .  . . . , 13. 

BINARY CODE GEOMETRY 

Geometrically, every binary code word, having n-digits, can be represented 
as a point in the n-dimensional space with every coordinate being either 0 or  1. 
More specifically, every binary code word, having n digits, can be represented 
as a vertex of a unit n-dimensional cube. A s  a matter of fact, there is a one- 
to-one correspondence or mapping of the set of all n-digit binary words - 
the set of all vertices of the unit n-dimensional cube. It is easy to  prove that 
there are  2" members in the set of all vertices of the unit n-dimensional cube.' 
Hence, it follows from above that there a re  2" members in the set of all n-digit 
binary words. 
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DETERMINATION CRITERIA 

The criteria for determining a set of optimum command address codes from 
the sets  of all 4, 5,  . . . . , 31, and 32-digit binary words are: 

(1) the Hamming distance, if the codes have the same word length (i.e., the 

(2) the code subsequences, if the codes have distinct word lengths. (That 

same number of binary digits in each code). 

is, does the code sequence of binary digits contain a subsequence of 
binary digits which is identical to a code of smaller word length ?). 

Let A = ( a l ,  a,, . . . . , an) and B = (bl , b, ,  . . . . , bn)  be binary words 
(i.e., a i  = 0 or 1, and b j  = 0 or 1 wherei , j = 1, 2, . . . . , n ) .  The Hamming 
distance betweenA and B is defined to be the number of coordinates for which 
A and B are different. For example, if A = 00110 and B = 10101, the Hamming 
distance is 3 since A and B a r e  different in the first,  fourth, and fifth coordinates. 
The Hamming distance may also be defined as the least number of edges, on the 
unit n-dimensional cube, which must be traversed in order to go from A to B. 

ON THE OPTIMUM SETS OF COMMAND ADDRESS CODES 

A FAP computer program has been written for the IBM 7090/7094 to find 
the optimum set of n-digit command address codes (including the code whose 
coordinates a r e  all zeros) which have a minimum mutual Hamming distance of 
d ,  and whose total number (i.e., the total number of members in the optimum 
set) constitute the maximum number of n-digit binary words which have a 
minimum mutual Hamming distance of d. The maximum number of n-digit 
binary words which have a minimum mutual Hamming distance of d is often 
referred to as the upper bound for the number of n-digit binary words which have 
a minimum mutual Hamming distance of d. The upper bound will be denoted by 
B(n7 d). 

The set of n-digit binary words, as determined by the FAP computer pro- 
gram, is not the only set of n-digit binary words which have a minimum mutual 
Hamming distance of d, and whose total number is equivalent to B( n ,  d) ,  unless 
d = 1, in which case the F A P  computer program is not needed since B(n, 1) = 2” .  
That is, the members of the set  of - all n-digit binary words (i.e., the set of all 
vertices of the unit n-dimensional cube) have a minimum mutual Hamming dis- 
tance of 1. When d > 1 (note that d cannot exceed n), the total number of sets of 
n-digit binary words which have a minimum mutual Hamming distance of d ,  
with the total number of members in each set equivalent to B(n, d),  can be 
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expressed as 
- 

The ((2"/B(n, d)) - 1) "other" sets can be easily generated from the "computedT7 
set (i.e., the set which is determined by the FAP computer program) by changing 
0 to 1 or  1 to 0 for one o r  more coordinates or  digit positions in each n-digit 
binary word of the "computed" set. For example, suppose that n = 3 and d = 3, 
then B(n, d )  = B( 3, 3)  = 2 and the "computed" set is 

000 
111 

Since 2"/8(n,d) = 23/'13(3, 3 )  = 4, there are (2"/B(n,d)\  - 1 = (23/B(3, 3)) - 1 = 3 
"other" sets which can be generated from the "computed" set. Generating these 
sets, we have 

001 010 100 
110, 101, and 011 

For the left-most set, L e  third coordinate o r  digit position was complemented 
(i.e., 1 to 0 or  0 to 1) in each of the 3-digit binary words of the "computed'? 
set. For the second set from the left, the second coordinate was complemented. 
Finally, for the third set  from the left, .the first  coordinate was complemented. 

Observe, in the above example, that the Hamming distance between the first 
word in each of the "other" sets and the first  word in the "computed'' se t  is 1. 
This observation is useful when one has to determine which coordinate(s) o r  
digit position(s) to complement in the %omputed" set in order to generate the 
"other" set(s). In some generations or cases, a set of the f'other" sets will not 
contain a word which has a Hamming distance of 1 between itself and the first 
word of the "computed" set (Le., the word whose coordinates a re  all zeros). 
However, this will be easily recognized. In any event, every word in each of 
the "other" set(s) must have a Hamming distance of d ' < d between itself and a t  
least one word in the "computed" set. 
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MINIMIZING THE PROBABILITY OF ERROR OF THE 
COMMAND ADDRESS CODES 

The minimum mutual Hamming distance between the codes or  words of a 
set of n-digit binary words is closely related to the probability of e r ro r  of that 
set (i.e., the probability that a transmitted n-digit word of the set will be 
erroneously received as another n-digit word of the set). In general, the 
probability of e r r o r  of a set of n-digit binary words decreases as the minimum 
mutual Hamming distance of the members of the set increases. However, by 
increasing the minimum mutual Hamming distance, the number of codes or  
words in the set of n-digit binary words will, in most cases, be decreased 
(i.e., the number of words in a set of n-digit binary words which have a mini- 
mum mutual Hamming distance of d, will, in most cases, be smaller (and never 
larger) than the number of words in a set of n-digit binary words which have a 
minimum mutual Hamming distance of d 2 ,  if d, > d2). In other words, the larger 
the minimum Hamming distance, the smaller the number of vertices on the unit 
n-dimensional cube which can mutually satisfy that minimum Hamming distance. 
Expressing the above statements mathematically, we have: 

limB(n, d )  2 
d-+n 

and 

limB(n, d) = 0 
d-+n + 1 

but 

l i m B ( n ,  d) 2" 
d-1 

Since both B(n,d) and the probability of e r r o r  of the set of n-digit binary 
words or command address codes, which have a minimum mutual Hamming 
distance of d, are decreased as d (the Hamming distance) is increased, it 
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becomes necessary to have a "trade-off" between the minimization of the 
probability of e r r o r  and the number of n-digit words required for command 
address codes. 

n 

11 

12 

13 

14 

15 

16 

17 

In the work request by E. Melendey, the Hamming distance (between codes 
of the same length) was not specified. However, it was indicated that the 
number of words or  codes, which were required for command address codes, in 
each of the sets of 4, 5, . . . . , 31, and 32-digit binary words was relatively 
small. Furthermore, it was requested that: no member of the set of 4-digit 
command address codes be the same as any 4-digit subsequence of any member 
of the set of 5-digit command address c z s ;  no member of the sets of 4 and 
5-digit command address codes be the same as 4 or  5-digit subsequence 
of any member of the set of 6-digit command address codes; etc. . . . . . . . . 
In short, for m < n, no member of the set of m-digit command address codes should 
be the same as any m-digit subsequence of any member of the set of n-digit 
command address codes. 

B(n, d )  

16 

16 

16 

16 

32 

32 

32 

In order to satisfy the Hamming distance and "trade-off" criteria, the 

n 

5 

7 

8 

9 

10 

author decided to let 

n - - 
- 2 , truncated t o  the nearest integer .  

B(n, d)  

4 8  

16 

6 8  

16 

16 

16 

8 

d 

The upper bounc B(n, d )  for the number of members of each oL the sets of 
4, 5, . . . . , 25, and 26-digit binary codes, which have the aforementioned 
Hamming distance (i.e., d = n/2, truncated to the nearest integer), was de- 
termined by means of the computer program as follows: 

r 

18 

19 

20 

21 

22 

23 

24 

- n 

8 25 
- B(n, d )  

16 26 

16 

32 

16 

32 

32 

B(n, d )  

32 

16 
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The code subsequences criterion (i.e., the request that, for m < n, no mem- 
ber of the set  of rn-digit command address codes should be the same as any 
m-digit subsequence of any member of the set of n-digit command address codes) 
can be satisfied only at  the expense of severely limiting the number of usable 
command address codes. We proceed to show that this (i.e., the statement that 
the code subsequences criterion can be satisfied only at the expense of severely 
limiting the number of usable command address codes) is true. 

Limitations of the Code Subsequences Criterion on the Number of 
Usable Command Address Codes 

A s  a first step toward showing that the code subsequences criterion can be 
satisfied only at  the expense of severely limiting the number of usable command 
address codes, we prove that if (1) every member of the set  of all j -digit 
binary words ( j  = 1, 2, 3, . . . . , n)  were used as a command address code; and 
(2) the code subsequences criterion were satisfied, every binary word, whose 
word length (i.e., the number of digits in the word) is greater than j , is -- unusable 
a s  a command address code. 

Proof: 

Consider the set 

s = (00, 01, 10, 11) 

of all 2-digit binary words (i.e., the set of all vertices of the unit 2-dimensional 
cube). Also, consider the set 

T (000, 001, 010, 011, 100, 101, 110, 111) 

of all 3-digit binary words (Le., the set of all vertices of the unit 3-dimensional 
cube). The set T can be rewritten as 

T = (000, 010, 100, 110)0{001, 011, 101, 111) 
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Now, observe that each of the above two subsets of T is merely an "extension" 
of the set S. That is, the set (000, 010, 100, l l O }  can be easily generated from 
the set S by "attaching" or.placing the digit rrO" to the right of the two digits of 
each member of the set S. Similarly, the set (001, 011, 101, 111) can be easily 
generated from the set S by "attaching" the digit rrl'l to the right of the two digits 
of each member of the set S. Hence, the set T can be easily generated from the 
set S by "attaching" the digit 0 to the right of the two digits of each member of 
S (for half of the members of T), and then "attaching" the digit 1 to the right of 
the two digits of each member of S (for the other half of the members of T). 

Similar to above, the set 

w = (0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 

1100, 1101, 1110, 1111) 

= (0000, 0010, 0100, 0110, 1000, 1010, 1100, 1110}0(0001, 0011, 0101, 

0111, 1001, 1011, 1101, 1111) 
of all 4-digit binary words (i.e., the set of all vertices of the unit 4-dimensional 
cube) can be easily generated from the set T by "attaching" the digit 0 to the 
right of the three digits of each member of T (for half of the members of W ) ,  and 
then "attaching?' the digit 1 to the right of the three digits of each member of 
T (for the other half of the members ofW). 

Again, similar to above, the set of all 5-digit binary words can be easily 
generated from the set  W or  the set of all 4-digit binary words; the set  of all 
6-digit binary words can be easily generated from the set of all 5-digit binary 
words; . . . . . . . . . . .; the set of all n-digit binary words can be easily 
generated from the set  of all ( n  - 1)-digit binary words. 

From the above results, we see that every member of the set of all 3-digit 
binary words contains a 2-digit subsequence which is identical to at least one 
member of the set of all 2-digit binary words. Similarly, every member of the 
set of all 4-digit binary words contains a 3-digit subsequence which is identical 
to at least one member of the set of all 3-digit binary words. But, since every 
member of the set of all 3-digit binary words contains a 2-digit subsequence 
which is identical to at least one member of the set of all 2-digit binary words, 
it follows that every member of the set of all 4-digit binary words also contains 
a 2-digit subsequence which is identical to at least one member of the set of 
all 2-digit binary words. We could continue the above reasoning to show that: 
every member of the set of all 5-digit binary words contains 4-digit, 3-digit, and 
2-digit subsequences which a r e  respectively identical to at least one member of 
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the sets of all 4-digit, 3-digit, and 2-digit binary words; every member of the 
set of all 6-digit binary words contains 5-digit, 4-digit, 3-digit, and 2-digit 
subsequences which are respectively identical to  at  least one member of the 
sets of all 5-digit, 4-digit, 3-digitY and 2-digit binary words; . . . . . . . . . . . .; 
and every member of the set of all n-digit binary words contains ( n  -1)-digit, 
(n  - 2 )  -digit, . . . . . . . . . , 34ig i t ,  and 2-digit subsequences which are 
respectively identical to at least one member of the sets of all (n - 1)-digit, 
(n  - 2) -digit, . . . . , 3 - digit, and 2-digit binary words. Furthermore, for 
i = 2,  3, 4, . . . . , n, it is trivial that every member of the set of all i-digit 
binary words contains a digit which is identical to at least one member of the 
set of all 1-digit binary words i.e., the set (0, 1}) . Hence, for j = 1, 2, 3 . . . , 
n, it follows that every member of the set of all j-digit binary words contains 
( j  - 1 )  -digit, ( j - 2)-digit, . . . . , 3-digit, and 2-digit subsequences, and a digit 
which a re  respectively identical to at least one member of the sets of all 
( j  - 1 )  -digit, ( j - 2)-digit, . . . . , 2-digit, and 1-digit binary words. 

( 

From the above results, it now follows that if: (1) for j = 1, 2, . . . . , n ,  
every member of the set of all j-digit binary words were used as a command 
address code; and (2) the code subsequences criterion were satisfied, every 
member of the sets of all ( j + 1) -digit, ( j t 2)-digit, ( j t 3)-digit, . . . . . . . , 
and etc. binary words would be unusable as a command address code since it 
contains at least one used command address code of shorter word length (Le., 
j )  than itself. In other words, every binary word, whose word length is greater 
than j ,  is unusable as a command address code. 

Q.E.D. 

The argument of the above proof can also be utilized to easily show or  
prove that if: (1) every member of the set  of all j -digit binary words ( j  = 1, 
2, . . . , n) were used as command address codes; and (2) the code subsequences 
criterion were satisfied, every binary word, whose word length is smaller 
than j , could not be used as a command address code. The proof is left to the 
reader. 

From the above results, it is clear that the minimum mutual Hamming 
distance of the selected set of j -digit command address codes ( j  = 1, 2, . . . , n) 
can not be 1, since'B( j ,  1) = 2' (i.e., the selected set of j-digit command address 
coderwould be equivalent to the set of all j-digit binary words, which mean 
that every binary word whose word length is not j is unusable as a command 
address code). Hence, the minimum mutual Hamming distance of the selected 
set of j -digit command address codes must be 2 o r  more. If the minimum 
mutual Hamming distance of the selected set of j -digit command address codes 
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is 2, then the set of j -digit command address codes contains one-half of the 
members of the set of all j -digit binary words since B( j , 2 )  = 2 j - l .  

Again, consider the set 

s = (00, 01, 10, 11) 

of all 2-digit binary words. The set S can be expressed as 

s = (00, 11}0(01, 10) 

where the two subsets of S a r e  the two sets of all %-digit binary words which 
have, for each set, a minimum mutual Hamming distance of 2. It was proven 
above that we can not use both subsets of S as command address codes. Hence, 
as a first choice, =select the subset (00, 11) as the set of 2-digit command 
address codes. Now, again, consider the set 

T = (000, 001, 010, 011, 100, 101, 110, 111) 

Since 00 and 11 are command address codes, the set of 3-digit command ad- 
dress  codes is (010, 101) after the code subsequences criterion is satisfied. 
(Note that the set of 3-digit command address codes is (000, 111) if the sub- 
set (01, 10) is used as the set of 2-digit command address codes). 

From the set of all 4-digit binary words, W ,  we see, since 00, 11, 010 and 
101 are selected command address codes, that the set of 4-digit command 
address codes is empty (i.e., no elements or  members in the set) after the 
code subsequences criterion is satisfied. (Note that the set of 4-digit command 
address codes is also empty if 01, 10, 000, and 111 are the selected command 
address codes). It now follows that the sets of 5-digit, 6-digit, . . . . , ( n  - 1)-digit, 
and n-digit command address codes are empty since every member of each of 
the aforementioned sets contains a 4-digit subsequence which is identical to at 
least one member of the set of all 4-digit binary words. 

Suppose we first select command address codes from the set of all 4-digit 
binary words, W. As above, we can not use every member in the set W as a - 
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command address code. Hence, similar to above, we select a set of 4-digit 
binary words, which have a minimum mutual Hamming distance of 2, as  the 
set of 4-digit command address codes. Since the set W can be expressed as 

w = (0000, 0011, 0101, 0110, 1001, 1010. 1100, l l l l )U(O001.  0010, 0100. 

0111, 1000. 1011, 1101, 1116) 

(where the two subsets of W a r e  the two sets of all 4-digit binary words which 
have, for each set, a minimum mutual Hamming distance of a) ,  we select the 
subset (0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111) as the set of 4-digit 
command address codes. Now, since 0000, 0011, 0101, 0110, 1001, 1010, 1100, 
and 1111 are selected command address codes, the set of 5-digit command 
address codes, after the code subsequences criterion is satisfied, is (00010, 
00100, 01000, 01110, 10001, 10111, 11011, 11101) whose members have a mini- 
mum mutual Hamming distance of 2. But, from the set  of all 6-digit binary 
words, we find that the set of 6-digit command address codes is empty, after 
the code subsequences criterion is satisfied, since 0000, 0011, 0101, 0110, 1001, 
1010, 1100, 1111, 00010, 00100, 01000, 01110, 10001, 10111, 11011, and 11101 
a re  selected command address codes. Similar to above, it now follows that the 
sets of 7-digit, &digit, . . . . , ( n  - 1)-digit, and n-digit command address codes 
a re  empty since every member of each of the aforementioned sets contains a 
6-digit subsequence which is identical to at least one member of the set of all 
6-digit binary words. Thus, a trend is established. We conclude that i f :  (1) 
every member of one of the two sets of all j -digit binary words, which have for  
each se t  a minimum mutual Hamming distance of 2 and an upper bound of B( j , 2 ) ,  
were used as  a command address code; and (2) the code subsequences criterion 
were satified, there exist a set of ( j -t 1) -digit binary words, which have a mini- 
mum mutual hamming distance of 2 and an upper bound of B( j , 2 ) ,  which a r e  
usable as command address codes. Now, if: (1) every member of the aforemen- 
tioned set of ( j + 1 )-digit binary words is  used as a command address code; and 
(2)  the code subsequences criterion is again satisfied, every binary word, whose 
word length is greater than j + 1, is unusable as a command address code. 

The non-empty sets of 4-digit, 5-digit, . . . . . . . , 3l-digit, and 32-digit 
command address codes can be increased but only a t  the expense of further 
reducing the number of codes in one o r  more sets. For example, suppose we 
select (for command address codes) one-half of the members from one of the 
two sets, (0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111) and (0001, 0010, 0100, 
0111, 1000, 1011, 1101, 1110), of 4-digit binary words which have, for each set, 
a minimum mutual Hamming distance of 2.  The selected 4-digit binary words 
(say,  0000, 0011, 0101, and 0110) constitute the selected set of 4-digit command 
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address codes which have a minimum mutual Hamming distance of 2. Satisfying 
the code subsequences criterion, the sets of 5-digit, 6-digit, and 7-digit command 
address codes (which have, for each set, a minimum mutual Hamming distance 
of 2) a r e  respectively {OOOIO, O O ~ O O ,  O ~ O O O ,  01110, 10001, 10111, 11010, 11100}, 
(010010, 011110, 101001, 111011, 111101), and (0111110, 1111111) which indi- 
cates that the set(s) of 8-digit and/or 9-digit command address codes are/is  
empty. It follows that the 10-digit, ll-digit, . , . . , 31-digit, and 32-digit sets 
of command address codes are also empty. 

Other Work on Command Address Codes at GSFC 

M r .  Morton Foxe, Operations Evaluation Branch, has recently completed 
an analysis and a written report* on command address codes. In his report, Mr .  
Foxe predicts (based on his analysis) that, for calendar years 1966-70, NASA 
will have a maximum number of 12 satellites which: (1) utilize the same frequency; 
and (2) require command address codes. Reasoning that the same set  of command 
address codes can be used for different frequencies, Mr .  Foxe subsequently 
concludes that the set of 8-digit binary words, which have a minimum mutual 
Hamming distance of 4 and an upper bound of 16, is the optimum set of command 
address codes. Furthermore, he gives the Experimenters and/or Space Scientists 
the additional choice of using members of the set  of 4-digit binary words, which 
have a minimum mutual Hamming distance of 2 and an upper bound of 8, as 
command address codes. 

As might be expected from the above analysis of this report, limitations 
are imposed on the se t  of 8-digit command address codes if  members of the 
set of 4-digit binary words are used as command address codes (i.e., the 
number of usable 8-digit command address codes is reduced o r  decreased 
according as the number of 4-digit command address codes is increased). In 
an analysis, the author of this report determined the set of %digit command 
address codes which have a minimum mutual Hamming distance of 4 after: (1) 
selecting as command address codes, every member of one of the two sets of 
all 4-digit binary words which have, for each set, a minimum mutual Hamming 
distance of 2;  and (2) satisfying the code subsequences criterion. It was dis- 
covered that the total number of members in the se t  of 8-digit command ad- 
d re s s  codes is reduced to one-half of its upper bound, B(8,4). That is, the total 
number of &digit command address codes is 8 if conditions (1) and (2), above, 
a r e  satisfied. However, the "reduced upperboundI1 of the members of the 

'Not published at th is  writing. 
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aforementioned set of 8-digit command address codes is not unique. As a matter 
of fact, if we use the set of 4-digit command address codes which have a mini- 
mum mutual Hamming distance of 2 and an upper bound of 8, we may use % 
word length k ,  k > 4, to determine a set of k-digit command address codes which 
have an upperbound of 8 and a minimum mutual Hamming distance of d"  , where 
2 Id" I k / 2 .  Also, as might be expected, every j-digit binary word ( j  = 1, 
2,  . . . , n), which is not a member of the two aforementioned sets (i.e., the sets  
of 4-digit and k-digit command address codes, k = 5, 6,  . . . , n ) ,  is unusable 
as a command address code. 

In a less exhaustive analysis, the author of this report found that the total 
number of members in the "optimum" set of 8-digit command address codes 
was respectively reduced (from an upper bound of 16) to 12, 13, and 14 if: (1) 
4 "selected" members, 2 "selected" members, and 1 "selected" member of one 
of the two sets of all 4-digit binary words (which have, for each set, a minimum 
mutual Hamming distance of 2) are respectively used as command address 
codes; and (2) the code subsequences criterion is satisfied. In Table I, the 
"reduced" sets of 8-digit command address codes are shown along with the 
"selected" 4-digit command address codes. 

CONCLUSIONS AND FINAL REMARKS 

For a set of command address codes of several word lengths? say i , 
i + 1, i + 2, . . . . , n for i = 1, 2,  . . . . , the number of usable command address 
codes, after the code subsequences criterion is satisfied, is or  is about (in most 
cases) equivalent to  the upper bound for the number of members in the sct of 
all i-digit binary words or codes. Depending on the number of i-digit com- 
mand address codes used, a total number of at least B( i ,  1) o r  2' command 
address codes can be dispersed among the word lengths i ,  i t 1, . . . . , n - 1, 
and n. For example, we can have: 

(1) B( i, 1) or 2' i -digit command address codes, and no ( i  +- 1)-digit, 
( i  + 2)-digit, . . . , ( n  - 1)-digit, o r  n-digit command address codes 

( 2 )  B( i, 2 )  or 2 I - l  i-digit command address codes, and B( i , 2 )  or  2 ' - '  
( i  +l)-digit command address codes with no ( i t 2)-digit, ( i  + 3)-digit, . . . . . . , ( n  - 1)-digit, or n-digit command address codes 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 .  

(m) at least one comm'and address code of word lengths i ,  i 1 1, . . . , n-1, 
and n ,  for i > 1 @.e., at least one i-digit command address code: at least 
one (i + 1)-digit command address code; etc. . . .). 

12 



It is clear that the greater the number of command address codes of the 
same word length, the smaller the number of distinct word lengths for which 
command address codes can be used. Expressing this mathematically, let: 

(1) N be the number of command address codes of the same word length, 

(2) S be the number of distinct word lengths for which command address 

s a y i ,  and 

codes can be used, then 
l imS = 1 

Furthermore, if we wish to use a finite number of word lengths, say i ,  i t 1, 
i t 2, . . . . . . . , for which command address codes can be used, it is necessary 
to: (1) choose i sufficiently large so that 2' is equal to or  greater than the 
desired total number of command address codes of word lengths i ,  i t 1, i t 2,  . . . . . . . ; and (2) select the command address codes in a manner so that they 
are "properly" dispersed among the word lengths i ,  i t 1, i t 2, . . . , . . . . . . 
This appears, to the writer, to create a tedious task for  the GSFC Frequency 
Control Officer in future assignments of command address codes to NASA 
spacecraft. For once a finite number of word lengths, for which command 
address codes can be used, are made available to the Experimenters and/or 
Space Scientists, the requests and demands for command address codes of a 
particular word length may become excessive, and thereby cause the command 
address codes of other word lengths to be adversely affected. 

N+2 

RE COMMENDATIONS 

In view of the above analysis and conclusions, it is recommended that one 
word length be used for all of the command address codes. The use of one word 
length precludes the use or  application of the code subsequences criterion. 
This will simplify, to a great degree, future assignments of command address 
codes by the GSFC Frequency Control Officer. 

The word length should be: (1) large enough to provide a sufficient number 
of codes for a chosen Hamming distance; and (2) small enough to alleviate any 
unnecessary handling of bits. The upper bound, B(n , d ) ,  for the number of codes 
of length n which have a minimum mutual Hamming distance of d has been 
computed by the F A P  computer program, and is given in Table 11 for n = 4, 5, . . . , 
13 and d = 2,  3 ,  . . . . , 13. (NOTE: the reader is invited to compare Table I1 
with the theoretical predictions). 

Command address codes of two distinct word lengths can be assigned without 
too much difficulty even though they are interrelated. Hence, as a second choice, 
the author also recommends two distinct word lengths. 
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Table I 

Optimum Sets of 4-Digit and 8-Digit Command Address Codes which 
Respectively have a Minimum Mutual Hamming Distance of 2 and 4. 

4 -Digit C om mand Add re  ss 
Codes (Binary) 

0000 
0011 
0101 
0110 
1001 
1010 
1100 
1111 

4-Digit Command Address 
Codes (Binary) 

0000 
0011 
1100 
1111 

4-D igit C ommand Add re ss 
Codes (Binary) 

0000 
0011 

14 

8 -Digit C om mand Add re s s 
Codes (Binary) 

00010001 
00100010 
01000100 
011101 11 
10001000 
10111011 
110 11 101 
111011 10 

8-Digit Command Address 
Codes (Binary) 

00010001 
00100010 
00101101 
01000 100 
0 1001011 
01110111 
10001000 
10110100 
10111011 
110 10010 
11011101 
11101110 

8-Digit Command Address 
Codes (Binary) 

000 10001 
00100010 
00101101 
01000100 
01001011 
0 11 10111 
01111000 
10001000 
10110100 
10111011 
11010010 
110 11 101 
11101110 



Table I (Continued) 

4-D igit Command Add res s 
Codes (Binary) 

0000 

8-Digit Command Address 
Codes (Binary) 

00010001 
000 11 110 
00100010 
00101101 
01000100 
0 1001 0 11 
011 101 11 
01111000 
10001000 
10110100 
10111011 
110 100 10 
11011101 
11101110 

Table II 

The Upper Bound for the Number of Binary Words o r  Codes of Length n 
which have a Minimum Mutual Hamming Distance of d. 
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